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1 Introduction

The Web is a very rich source of linguistic data, and in the last
few years it has been used very intensively by linguists and lan-
guage technologists for many tasks (see Kilgarriff and Grefen-
stette 2003 for a review of some of the relevant work). Among
other uses, the Web allows fast and inexpensive construction of
“reference”/“general-purpose” corpora, i.e., corpora that are not
meant to represent a specific sub-language, but a language as a
whole. There is a large literature on the issue of representative-
ness of corpora (see, e.g., Biber 1993), and several recent studies
on the extent to which Web-derived corpora are comparable, in
terms of variety of topics and styles, to traditional “balanced” cor-
pora (e.g., Fletcher 2004, Sharoff this volume). Our contribution,
in this paper, is to present an automated, quantitative method to
evaluate the “variety” or “randomness” (with respect to a number
of non-random partitions) of a Web corpus. The more random/less
biased towards a specific partition a corpus is, the more it should
be suitable as a general-purpose corpus. It is important to re-
alize that we are not proposing a method to evaluate whether a
sample of webpages is a random sample of the Web. Instead, we
are proposing a method to evaluate if a sample of webpages in a
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certain language is reasonably varied in terms of the topics (and,
perhaps, textual types) it represents.

In our evaluation of the method, we focus on general-purpose
corpora built issuing automated queries to a search engine and re-
trieving the corresponding pages, which has been shown to be an
easy and effective way to build Web-based corpora (see section 2
below). With respect to this approach, it is natural to ask which
kinds of query terms (henceforth seeds) are more appropriate to
build a corpus that is comparable, in terms of variety and repre-
sentativeness, to a traditional balanced corpus such as the British
National Corpus (BNC). We will test our method for assessing
Web corpus randomness on corpora built with low, medium and
high frequency seeds. However, the method per se can also be
used to assess the randomness of corpora built in other ways (e.g.,
by crawling the Web starting from a few selected URLs).

Our method is based on the comparison of the word frequency
distributions of the target corpus to word frequency distributions
constructed using queries to a search engine for deliberately biased
seeds (i.e., instead of trying to compare the corpus to a supposedly
unbiased corpus, we look at how it compares to corpora that we are
almost certain are highly biased). As such, it is nearly resource-
free, as it only requires lists of words belonging to specific domains
that can be used as biased seeds. While in our experiments we
used Google as the search engine of choice, and in what follows
we often use “Google” and “search engine” interchangeably, our
procedure could also be carried out using a different search engine
(or other ways to obtain collections of biased documents, e.g., via
a directory of pre-categorized webpages).

After reviewing some of the relevant literature in section 2,
in section 3 we introduce and justify our methodology. We show
how, when we can sample randomly from the whole BNC and from
its domain and genre partitions, our method to measure distance
between sets of documents produces intuitively plausible results
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(similar partitions are nearer each other), and that the most var-
ied, least biased distribution (the one from the whole BNC) is the
one that has the least average distance from all the other (biased)
distributions (we provide a geometric explanation of why this is
the case). Hence, we propose average distance from a set of biased
distributions as a way to measure corpus randomness: the lower
the average distance, the more random/unbiased the corpus is. In
section 4, we apply our technique to unbiased and biased corpora
constructed via Google queries. The results of the Google experi-
ments are very encouraging, in that the corpora built with various
unbiased seed sets show, systematically, significantly shorter av-
erage distance to the biased corpora than any corpus built with
biased seeds. Among unbiased seed sets chosen from high and
medium frequency words, and from the whole frequency range,
medium frequency words appear to be the best (in the sense that
they lead to the least biased corpus, according to our method).
In section 5, we conclude by summarizing our main results, con-
sidering some open questions and sketching directions for further
work.

2 Relevant work

Our work is obviously related to the recent literature on build-
ing linguistic corpora from the Web using automated queries to
search engines (see, e.g., Ghani et al. 2001, Fletcher 2004, Baroni
and Bernardini 2004, Sharoff this volume, Ueyama this volume).
With the exception of Baroni and Bernardini, who are interested in
the construction of specialized language corpora, these researchers
use the technique to build corpora that are meant to function as
general-purpose “reference” corpora for the relevant language.

Different criteria are used to select seed words. Ghani and col-
leagues iteratively bootstrap queries to AltaVista from retrieved
documents in the target language and in other languages. They
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seed the bootstrap procedure with manually selected documents,
or with small sets of words provided by native speakers of the tar-
get language. They evaluate performance in terms of how many of
the retrieved pages are in the relevant language, but do not assess
their quality or variety. Fletcher constructs a corpus of English
by querying AltaVista for the 10 top frequency words from the
BNC. He then conducts a qualitative analysis of frequent n-grams
in the Web corpus and in the BNC, highlighting the differences
between the two corpora. Sharoff (this volume; see also Sharoff
submitted) builds corpora of English, Russian and German using
queries to the Google search engine, seeded with manually cleaned
lists of words that are frequent in a reference corpus in the relevant
language, excluding function words. Sharoff evaluates the results
both in terms of manual classification of the retrieved pages and by
means of a qualitative analysis of the words that are most typical
of Web corpora vs. other corpora. For English, he also provides
a comparison of corpora retrieved using non-overlapping but sim-
ilarly selected seed sets, concluding that the difference in seeds is
not having a strong effect on the nature of the pages retrieved.
Ueyama (this volume; see also Ueyama and Baroni 2005) builds
corpora of Japanese using both words from a basic Japanese vo-
cabulary list, and translations from one of Sharoff’s English lists
(based on the BNC) as seeds. Through qualitative methods simi-
lar to those of Sharoff, she shows how the corpus built using basic
vocabulary seeds is characterized by more “personal” genres than
the one constructed from BNC-style seeds.

Like Sharoff and Ueyama, we are interested in evaluating the
effect that different seed selection (or, more in general, corpus
building) strategies have on the nature of the resulting Web cor-
pus. However, rather than performing a qualitative investigation,
we develop a quantitative measure that could be used to evaluate
and compare a large number of different corpus building methods,
as it does not require manual intervention. Moreover, our empha-
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sis is not on the corpus building methodology, nor on classifying
the retrieved pages, but on assessing whether they appear to be
reasonably “unbiased” with respect to a range of topics or other
criteria.

A different line of research somewhat related to ours pertains
to the development of methods to perform quasi-random sampling
of documents from the Web. The emphasis is not on corpus build-
ing, but on estimating statistics such as the percentage of pages
in a certain domain, or the size and overlap of pages indexed by
different search engines. For example, both Henzinger et al. (2000)
and Bar-Yossef et al. (2000) use random walks through the Web,
represented as a graph, to answer questions of this kind. Bharat
and Broder (1998) issue random queries (based on words extracted
from documents in the Yahoo! hierarchy) to various search engines
in order to estimate their relative size and overlap. There are
two important differences between work in this tradition and ours.
First, we are not interested in an unbiased sample of webpages, but
in a sample of pages that, taken together, can give a reasonably
unbiased picture of a language, independently of whether they are
actually representing what is out there on the Web or not. For
example, although computer-related technical language is proba-
bly much more common on the Web than, say, the language of
literary criticism, we would prefer a biased retrieval method that
fetches documents representing these and other sub-languages in
comparable amounts, to an unbiased method that leads to a cor-
pus composed mostly of computer jargon. Second, while here we
analyze corpora built via random queries to a search engine, the
focus of the paper is not on this specific approach to Web corpus
construction, but on the procedure we develop in order to evaluate
how varied the linguistic sample we retrieve is. Indeed, in future
research it would be interesting to apply our method to corpora
constructed using random walks of the Web, along the lines of
Henzinger, Bar-Yossef and their colleagues.
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3 Measuring distributional properties of bi-
ased and unbiased collections

Our goal is to create a “balanced” corpus of webpages from the
portion of the Web which contains documents of a given language;
e.g., the portion composed of all Italian webpages. As we observed
in the previous section, obtaining a sample of unbiased documents
is not the same as obtaining an unbiased sample of documents.
Thus, we will not motivate our method in terms of whether it
favors unbiased samples from the Web, but in terms of whether the
documents that are sampled appear to be balanced with respect to
a set of deliberately biased samples. We leave it to further research
to study how the choice of the biased sampling method affects the
performance of our procedure. In this section, we introduce our
approach by discussing experiments conducted on the BNC where
the corpus is seen as a model for the Web, that is, a large collection
of documents of different nature. We investigate the distributional
properties of the BNC, and the known categories defined within
the corpus, which are fully accessible and therefore suitable for
random sampling. The method we present highlights important
properties that characterize the overall distribution of documents
inferrable from incomplete and noisy sampled portions of it; e.g.,
those which can be retrieved using a suitable set of seed words. In
later sections we will show how the method works when the full
corpus, the Web, is not available and there is no alternative to
“noisy” sampling.

3.1 Collections of documents as unigram distribu-
tions

A compact way of representing a collection of documents is by
means of a frequency list, where each word is associated with the
number of times it occurred in the collection. This representation
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defines a simple “language model”, a stochastic approximation to
the language used in the collection; i.e., a “0th order” word model
or a “unigram” model. Language models of varying complexity
can be defined. As the model’s complexity increases, its approxi-
mation to the target language improves (cf. Shannon’s classic ex-
ample on the entropy of English – Shannon 1948). In this paper
we focus on the unigram model as a natural starting point; how-
ever the methods we investigate extend naturally to more complex
language models.

3.2 Similarity measures for document collections

Our method works by measuring the similarity of collections of
documents, approximated as the similarity of the derived unigram
distributions, based on the assumption that two similar document
collections will determine similar language models. We experi-
mented with two similarity measures over unigram models. The
first is the relative entropy, or Kullback Leibler distance (also re-
ferred to as KL), D(p||q) (cf. Cover and Thomas 1991, p. 18),
defined over two probability mass functions p(x) and q(x):

D(p||q) =
∑

x∈W

p(x) log
p(x)
q(x)

(1)

The relative entropy is a measure of the cost, in terms of av-
erage number of additional bits needed to describe the random
variable, of assuming that the distribution is q when instead the
true distribution is p. Since D(p||q) ≥ 0, with equality only if p
= q, unigram distributions generated by similar collections should
have low relative entropy. KL is finite only if the support set of q
is contained in the support set of p, hence we make the assumption
that the random variables always range over the dictionary W , the
set of all word types occurring in the BNC. To avoid infinite cases
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Word Unigram Total
P Q

w1 33 17 50
w2 237 156 393
.. .. .. ..
w|W | 26 1 27
Total 138,574 86,783 225,357

Table 1. Sample contingency table for two unigram distributions P and Q

a smoothing value α is added when estimating probabilities; i.e.,

p(x) =
countP (x) + α

|W |α +
∑

x∈W countP (x)
(2)

where countP (x) is the frequency of x in the unigram distribution
P, and |W | is the number of word types in W .

Another way of assessing the similarity of unigram distribu-
tions is by analogy with categorical data analysis in statistics,
where the goal is to assess the degree of dependency, or contin-
gency, between two classification criteria. Given two distributions
P and Q we create a contingency table in which each row rep-
resents a word in W , and each column represents, respectively,
frequencies in P and Q (see table 1). If the two distributions
are independent from each other, a cell probability will equal the
product of its respective row and column probabilities; e.g., the
probability that w1 will occur in distribution P is p(w1)× p(P) =

50
225,357 ×

138,574
225,357 = 0.000135. The expected number of times w1 oc-

cur in P, under the null hypothesis that P and Q are independent,
is then e1,P = N×p(w1)p(P) = (225, 357)×(0.000135) = 30.48, as
in a multinomial experiment. If the hypothesis of independence is
true then the observed cell counts should not deviate greatly from
the expected counts. Here we use the X2 (chi-square) test statistic,
involving the |W | deviations, to measure the degree of dependence
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between P and Q, and thus – intuitively, their similarity:

X2 =
∑

i,j

[oi,j − ei,j ]2

ei,j
(3)

Rayson and Garside (2000) use a similar approach to corpus com-
parison, where deviations in the use of individual words are com-
pared. Here we compare distributions over the whole dictionary
to measure the similarity of two text collections.

3.3 Similarity of BNC partitions

In this section we introduce and test the general method in a set-
ting where we can randomly sample from the whole BNC corpus (a
classic example of a “balanced” corpus, Aston and Burnard 1998)
and from its labeled subsets. The BNC contains 4,054 documents
composed of 772,137 different types of words with an overall fre-
quency, according to our tokenization, of 112,181,021 word tokens.
Documents come classified along different dimensions. In particu-
lar, we adopt here David Lee’s revised classification (Lee 2001) and
we partition the documents in terms of “mode” (spoken/written),
“domain” (19 labels; e.g., imaginative, leisure, etc.) and “genre”
(71 labels; e.g., interview, advertisement, email, etc.) For the pur-
poses of the statistics reported below, we filter out words belonging
to a stop list containing 1,430 types and composed mostly of func-
tion words. These were extracted in two ways: they either were
already labeled with one of the function word tags in the BNC
(such as “article” or “coordinating conjunction”) or they occurred
more than 50,000 times.

Relative entropy and chi-square intuitively measure how sim-
ilar two distributions are. A simple experiment illustrates the
kind of outcomes they produce. If the similarity between pairs
of unigrams, corresponding to specific BNC genres or domains is
measured, often the results match our intuitions. For example, in
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S meeting
S meeting S meeting
R Genre KL Genre X2

1 S meeting 0 S meeting 0
2 S brdcast discuss 0.27 S interview 82,249
3 S speech unscript 0.39 S parliament 97,776
4 S unclassified 0.41 S brdcast doc 100,566
5 S interview hist 0.44 S speech unscript 103,843
.. .. .. ..
67 S demonstration 1.45 W ac soc science 914,666
68 W fict drama 1.48 W pop lore 973,534
69 S lect nat sci 1.54 W non ac pol law 976,794
70 S lect commerce 1.61 W misc 1,036,780
71 W fict pros 1.64 W fict prose 1,640,670

Table 2. Similarities and differences among genres

the case of the genre “S meeting”1 the 5 closest (and least close)
genres are those listed in table 2.

The table shows that both measures rank higher genres which
refer to speech transcriptions of situations involving several people
speaking (discussions, interviews, parliament reports, etc.), as is
the case with the transcriptions relative to the target category
“S meeting”. On the other hand, at the bottom of the ranking, we
find written literary texts, or transcriptions of prepared speeches,
which are more dissimilar to the target genre.

Figure 1 plots the matrices of distances between unigrams cor-
responding to different BNC domains for both X2 and KL; do-
mains are ordered alphabetically on both x and y axis. Overall the
two plots have a somewhat similar topology, resembling a double
plateau with peaks on the background. The plot shows, not too
surprisingly, that speech transcriptions (whose domain names are

1“S ” is the prefix for spoken categories, while “W ” is the prefix for written
categories.
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Figure 1. Plots of KL and X2 distance matrices for the“domain”BNC partitions

prefixed with an “S”) tend to be more similar to each other than
to written text (“W”-prefixed domains), and vice-versa. However,
the figure also shows several important differences between the
measures. First of all, X2 is symmetric while KL is not. In partic-
ular, if the size of the two distributions varies greatly, as between
the first few domains (close to 1) and the last ones (close to 19)
the choice of the background distribution in KL has an effect on
the magnitude of the distance: greater if the “true” distribution is
larger because of the log-likelihood ratio.

More important is the difference emerging from the region far
in the background. Here the two measures give very different rank-
ings. In particular, X2 tends to interleave the rankings of written
and spoken categories. X2 also ranks lowest several written do-
mains. Table 3 illustrates this fact with an example, where the
target domain is “W world affairs”. Interestingly, X2 ranks low
domains such as “W commerce” (in the middle of the rank) which
are likely to be similar to some extent to the target domain. KL
instead produces a more consistent ranking, where all the spoken
domains are lower than the written ones and intuitively similar do-
mains such as “W commerce” and “W social science” are ranked
highest. One possibility is that the difference is due to the fact that
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W world affairs
R Domain KL Domain X2

1 W world affairs 0 W world affairs 0
2 W soc science 0.6770 S demog unclassified 1,363,840
3 W commerce 0.7449 S cg public instit 1,568,540
4 W arts 0.8205 S cg education 1,726,960
5 W leisure 0.8333 W belief thought 1,765,690
6 W belief thought 1.0405 S cg leisure 1,818,110
7 W app science 1.0685 S cg business 1,882,430
8 W nat science 1.4683 S demog DE 2,213,530
9 W imaginative 1.4986 W commerce 2,566,750
10 S cg education 1.5010 W arts 2,666,730
1 S cg public instit 1.6694 S demog C1 2,668,690
12 S cg leisure 1.7632 S demog C2 2,716,090
13 S cg business 1.8945 S demog AB 2,834,220
14 S demog AB 2.6038 W soc science 3,080,840
15 S demog C1 2.7667 W leisure 3,408,090
16 S demog C2 2.8110 W nat science 3,558,870
17 S demog DE 3.2886 W app science 3,711,010
18 S demog unclassified 4.3921 W imaginative 5,819,810

Table 3. Rankings produced by KL and X2 with respect to the domain
“W world affairs”
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the unigram distributions compared with KL are smoothed while
raw counts are used for X2. However, when we tried smoothing
the contingency tables for X2 we obtained even more inconsistent
results. An alternative explanation relates the behavior of X2 to
the fact that the distributions being compared have long tails of
low frequency counts. It is a matter of contention whether X2, in
the presence of sparse data, i.e., in the presence of cells with less
than five counts, produces results which are appropriately approx-
imated by the χ2 distribution, and thus statistically interpretable
(cf. Agresti 1990). It might be that, even if the use described
here only aims at relative assessments of dependency/similarity,
rather than parametric testing, the presence of large numbers of
low frequency counts causes more noisy measurements with X2

than with KL.
Different metrics have different properties and might provide

different advantages and shortcomings depending on the specific
task. Since it seems that KL is more appropriate to our task in
the remainder of the paper we mainly present results using KL,
although we did run all experiments with both measures, often
obtaining very similar results.

3.4 A ranking function for sampled unigram distri-
butions

What properties distinguish unigram distributions drawn from the
whole BNC from distributions drawn from its subsets – genre,
mode and domain? This is an important question because, if iden-
tified, such properties might help to discriminate between sampling
methods which produce more random collections of documents and
more biased ones. We suggest the following hypothesis. Unigrams
sampled from the full BNC have distances from biased samples
which tend to be lower than the distances of biased samples to
other biased samples. If this hypothesis is true then if we sample
unigrams from the whole BNC, and from its “biased” subsets, the
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Figure 2. Visualization of the distances (continuous lines with arrows) between
points representing unigrams distributions, sampled from“biased”partitions A and
B and from the full collection of documents C = A ∪B

vector of distances between the BNC sample and all other samples
should have lower mean than the vectors for biased samples.

Figure 2 depicts a geometric interpretation of the intuition
behind this hypothesis. Suppose that the two squares A and B
represent two partitions of the space of documents C. Addition-
ally, m pairs of unigram distributions, represented as points, are
produced by random samples of documents from these partitions;
e.g., a1 and b1. The mean Euclidean distance between (ai, bi) pairs
is a value between 0 and h, the length of the diagonal of the rect-
angle which is the union of A and B. Instead of drawing pairs
we can draw triples of points, one point from A, one from B, and
another point from C = A ∪B. Approximately half of the points
drawn from C will lie in the A square, while the other half will lie
in the B square. The distance of the points drawn from C from the
points drawn from B will be between 0 and g, for approximately
half of the points (those lying in the B region), while the distance
is between 0 and h for the other half of the points (those in A).
Therefore, if m is large enough, the average distance between C
and B (or A) must be smaller than the average distance between
A and B.2

2Because h =
√

l2 + 2l2 > g =
√

2l2.
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Samples from biased portions of the corpus should tend to
“remain” in a given region, while samples from the whole corpus
should be closer to biased samples, because the unbiased sample
draws words from across the whole vocabulary, while biased sam-
ples have access to a limited vocabulary. To summarize then, we
suggest the hypothesis that samples from the full distribution have
a smaller mean distance than all other samples. More precisely,
let Ui,k be the kth of N unigram distributions sampled under yi,
yi ∈ Y , where Y is the set of sampling categories. Additionally, for
clarity, we will always denote with y1 the unbiased sample, while
yj , j = 2..|Y |, denote the biased samples. Let M be a matrix of

measurements, M ∈ IR|Y |×|Y |, such that Mi.j =
PN

k=1 D(Ui,k,Uj,k)
N ,

where D(., .) can be any similarity measure of the kind discussed
above, i.e., X2 or KL. In other words, the matrix contains the
average distances between pairs of samples (biased or unbiased).
Each row Mi ∈ IR|Y | contains the average distances between yi and
all other ys, including yi. We assign a score δi to each yi which is
equal to the mean of the vector Mi (excluding Mi,j , j = i):

δi =
1

|Y |− 1

|Y |∑

j=1,j #=i

Mi,j (4)

It could be argued that also the variance of the distances for y1

should be lower than the variance of the other ys, because the
unbiased sample tends to be equidistant from all other samples.
We will show empirically that this seems in fact to be the case.
When the variance is used in place of the mean, δi is computed as
the traditional variance of Mi (excluding Mi,j , j = i):

δi =
1

|Y |− 2

|Y |∑

j=1,j #=i

[Mi,j − µi]2 (5)

where µi is the mean of Mi, computed as in equation (4).
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3.5 Randomness of BNC samples

We first tested our hypothesis on the BNC in the following way.
For each of the three main partitions, mode, domain, and genre,
we sampled with replacement (from a distribution determined by
relative frequency in the relevant set) 1,000 words from the whole
BNC and from each of the labels (categories) belonging to the spe-
cific partitions. Then we measured the average distance between
each label in a partition, plus the sample from the whole BNC. We
repeated this experiment 100 times and summarized the results by
ranking each label, within each partition type, using δ.

Table 4 summarizes the results of this experiment for all three
partitions: mode, domain, and genre (only partial results are
shown for genre). The table shows results obtained both with
KL and X2 to illustrate the kinds of problems mentioned above
concerning X2, but we will focus mainly on the results concerning
KL. For all three experiments each sample category yi is ranked
according to its score δi. The KL-based δ always ranks the un-
biased sample “BNC all” higher than all other categories. At the
top of the rankings we also find other less narrowly topic/genre-
dependent categories such as “W” (all written texts) for mode, or
“W misc” and “W pop lore” for genre. Thus, our hypothesis is
supported by these experimental results. Unbiased samples tend
to be closer on average to biased samples, and this property can
be used to distinguish a biased from an unbiased unigram sam-
pling method. Interestingly, as anticipated in section 3.4, also
the variance of the distance vector seems to correlate well with
“biased-ness”. Unbiased samples tend to have more constant dis-
tances from biased samples, than samples to one another. Table 5
summarizes the – comparable – results obtained using for δi equa-
tion (5); e.g., the variance of Mi.

A different story holds for X2. There is clearly something
wrong in the rankings, although, sometimes we find the unbiased
sample ranked the highest. For example, for mode, “S” (spoken) is
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Table 5. Rankings based on δ, as the variance of the average distance between
samples from the BNC partitions plus samples from the whole BNC; low values
for δ ranked higher
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ranked higher than“W”, but it seems counterintuitive that samples
from only 5% of all documents are on average closer to all samples
than samples from 95% of documents. The reason why in general
“S” categories tend to be closer (also in the domain and genre
experiments) might have to do with low counts as suggested before,
and it may also be related to the magnitude of the unigram lists;
i.e., distributions made of a small number of unigrams might tend
to be closer to other distributions because of the small number of
words involved independently of the actual “similarity”.

4 Evaluating the randomness of corpora de-
rived from Google

In our proof-of-concept experiment, we compared the distribution
of words drawn from the whole BNC to those of words that belong
to various categories. Of course, when we download documents
from the Web via a search engine (or sample them in other ways),
we cannot choose to sample random documents from the whole
Web, nor select documents belonging to a certain category. We
can only use specific lexical forms as query terms, and we can only
retrieve a fixed maximum number of pages per query. Moreover,
while we can be relatively confident that the retrieved pages will
contain all the words in the query, we do not know according to
which criteria the search engine selects the pages to return among
the ones that match the query.3 All we can do is to try to control
the typology of documents returned by using specific query terms
(or other means), and we can use a measure such as the one we
proposed to look for the least biased retrieved collection among a
set of retrieved collections.

3If not in very general terms, e.g., it is well known that Google’s PageRank
algorithm weights documents by popularity.
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4.1 Selection of query terms

Since the query options of a search engine do not give us control
over the genre, topic and other textual parameters of the doc-
uments to be retrieved, we must try to construct a “balanced”
corpus by selecting appropriately balanced query terms, e.g., us-
ing random terms extracted from an available balanced corpus
(see Sharoff this volume). In order to build specialized domain
corpora, we will have to use “biased” query terms from the appro-
priate domain (see Baroni and Bernardini 2004). We extract the
random terms from the clean, balanced, 1M-words Brown corpus
of American English (Kučera and Francis 1967). Since the Web
is likely to contain much larger portions of American than British
English, we felt that queries extracted from the BNC would be
overall more biased than American English queries. We extracted
the top 200 most frequent words from the Brown (“high frequency”
set), 200 random terms with frequency between 100 and 50 inclu-
sive (“medium frequency” set) and 200 random terms with mini-
mum frequency 10 (the “all frequency” set – because of the Zipfian
properties of word types, this is a de facto low frequency word
set). We experimented with each of these lists as ways to retrieve
an unbiased set of documents from Google. Notice that there are
arguments for each of these selection strategies as plausible ways
to get an unbiased sample from the search engine: high frequency
words are not linked to any specific domain; medium and low fre-
quency words sampled randomly from a balanced corpus should
be spread across a variety of domains and styles.

In order to build biased queries, that should hopefully lead to
the retrieval of sets of topically related documents, we randomly
extracted lists of 200 words belonging to the following 10 domains
from the topic-annotated extension (Magnini and Cavaglia, 2000)
of WordNet (Fellbaum, 1998): administration, commerce, com-
puter science, fashion, gastronomy, geography, military, music,
sociology. These domains were chosen since they look “general”
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enough to be very well-represented on the Web, but not so general
as to be virtually unbiased (cf. the WordNet domain person). We
selected words only among those that did not belong to more than
one WordNet domain, and we avoided multi-word terms.

4.2 Experimental setting

From each source list (“high”, “medium” and “all” frequency sets
plus the 10 domain-specific lists), we randomly select 20 pairs of
words without replacement (i.e., no word among the 40 used to
form the pairs is repeated). We use each pair as a query to Google,
asking for pages in English only (we use pairs instead of single
words to maximize our chances to find documents that contain
running text – see discussion in Sharoff this volume). For each
query, we retrieve a maximum of 20 documents. The whole pro-
cedure is repeated 20 times with all lists, so that we can compute
means and variances for the various quantities we calculate.

Our unit of analysis is the corpus constructed by putting to-
gether all the non-duplicated documents retrieved with a set of 20
paired word queries. However, the documents retrieved from the
Web have to undergo considerable post-processing before being us-
able as parts of a corpus. In particular, following what is becoming
standard practice in Web corpus construction (see, e.g., Fletcher
2004), we discard very large and very small documents (documents
larger than 200Kb and smaller than 5Kb, respectively), since they
tend to be devoid of linguistic content and, in the case of large
documents, can skew the frequency statistics. For technical rea-
sons, we focus on HTML documents, discarding, e.g., PDF files.
Moreover, we use a re-implementation of the heuristic used by
Aidan Finn’s BTE tool4 to identify and extract stretches of con-
nected prose and discard “boilerplate”. In short, the method looks
for and selects the fragment of text where the difference between

4http://smi.ucd.ie/hyppia/bte/
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Figure 3. Average number of documents retrieved for each query category over
the 20 search sets; the error bar represents the standard deviation

text token count and HTML tag count is maximal. As a further
filter, we only keep documents where at least 25% of the tokens
in the stretch of text extracted in the previous step are from the
list of 200 most frequent Brown corpus words. Because of the
Zipfian properties of texts, it is pretty safe to assume that almost
any well-formed stretch of English connected prose will satisfy this
constraint.

Notice that a corpus can contain maximally 400 documents (20
queries times 20 documents retrieved per query), although typi-
cally the documents retrieved are not as many, because different
queries retrieve the same documents, or because some query pairs
are found in less than 20 documents. Figure 3 plots the means
(calculated across the 20 repetitions) of the number of documents
retrieved for each query category, and table 6 reports the sizes in
types and tokens of the resulting corpora. Queries for the “un-
biased” seeds (af, mf, and hf) tend to retrieve more documents,
although most of the differences are not statistically significant
and, as the table shows, the difference in number of documents
is often counterbalanced by the fact that specialized queries tend
to retrieve longer documents. The difference in number of doc-
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Search category Avg types Avg tokens
af 35,988 441,516
mf 32,828 385,375
hf 39,397 477,234
administration 39,885 545,128
commerce 38,904 464,589
computer science 25,842 311,503
fashion 44,592 533,729
gastronomy 36,535 421,705
geography 42,715 498,029
law 49,207 745,434
military 47,100 667,881
music 45,514 558,725
sociology 56,095 959,745

Table 6. Average number of types and tokens in corpora constructed via Google
queries

uments retrieved does not seem to have any systematic effect on
the resulting distances, as will be briefly discussed in 4.5 below.

4.3 Distance matrices and bootstrap error estima-
tion

We now rank each individual query category yi, biased and unbi-
ased, using δi, as we did before using the BNC partitions (cf. sec-
tion 3.5). Unigram distributions resulting from different search
strategies are compared by building a matrix of mean distances
between pairs of unigram distributions. Rows and columns of
the matrices are indexed by the query category, the first cate-
gory corresponds to one unbiased query, while the remaining in-
dexes correspond to the biased query categories; i.e., M ∈ IR11×11,
Mi,j =

P20
k=1 D(Ui,k,Uj,k)

20 , where Us,k is the kth unigram distribution
produced with query category ys.

The data collected can be seen as a dataset D of n = 20 data-
points each consisting of a series of unigram word distributions,
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one for each search category. If all n data-points are used once
to build the distance matrix we obtain one such matrix for each
unbiased category. Based on such matrix we can rank a search
strategy yi using δi as explained above (cf. section 3.4). Instead
of using all n data-points once, we create B “bootstrap” datasets
(cf. Duda et al. 2001) by randomly selecting n data-points from
D with replacement (we used a value of B=100). The B boot-
strap datasets are treated as independent sets and they are used
to produce B individual matrices Mb from which we compute the
score δi,b, i.e., the mean distance of a category yi with respect to
all other query categories in that specific bootstrap dataset. The
bootstrap estimate of δi is the mean of the B estimates on the
individual datasets:

δ̂i =
1
B

B∑

b=1

δ̂i,b (6)

Bootstrap estimation can be used to estimate the variance of our
measurements of δi, and thus the standard error:5

σboot[δ̂i] =

√√√√ 1
B

B∑

b=1

[δ̂i − δ̂i,b]2 (7)

As before we smooth the word counts when using KL, by
adding a count of 1 to all words in the overall dictionary. This
dictionary is approximated with the set of all words occurring in
the unigrams involved in a given experiment, overall on average
approximately 1.8 million types (notice that numbers and other
special tokens are boosting up this total). Words with an over-
all frequency greater than 50,000 are treated as stop words and
excluded from consideration (188 types).

5If the statistic δ is the mean, then in the limit of B the bootstrap estimate
of the variance is the variance of δ.
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Figure 4. 3D plot of the KL distance matrix comprised of the unbiased query (af)
and the biased queries results; only a subset of the biased query labels are shown

4.4 Results

As an example of the kind of results we obtain, figure 4 plots the
matrix produced by comparing the frequency lists from all 10 bi-
ased queries and the query based on the “all frequency” (af) term
set with KL. As expected the diagonal of the matrix contains all
zeros, while the matrix is not symmetric. The important thing to
notice is the difference between the vectors regarding the unbiased
query; i.e., M1,j and Mi,1 and the other vectors. The unbiased
vectors are characterized by smaller distances than the other vec-
tors. They also have a “flatter”, or more uniform, shape. The
experiments involving the other unbiased query types, “medium
frequency” and “high frequency”, produce similar results.

The upper half of table 7 summarizes the results of the ex-
periments with Google, compiled by using the mean KL distance.
The unbiased sample (af, mf, and hf) is always ranked higher than
all biased samples. Notice that the bootstrapped error estimate
shows that the unbiased sample is significantly more random than
the others. Interestingly, as the lower half of table 7 shows, some-
what similar results are obtained using the variance of the vectors
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Table 7. Google experiments: rankings for each unbiased sample category with
bootstrap error estimation (B=100)
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Mi instead of the mean, to compute δi. The unbiased method is
always ranked highest. However, since the specific rankings pro-
duced by mean and variance show some degree of disagreement,
it is possible that a more accurate measure could be obtained by
combining the two measures.

4.5 Discussion

We observed, on Google, the same behavior that we saw in the
BNC experiments, where we could directly sample from the whole
unbiased collection and from biased subsets of it (documents parti-
tioned by mode, domain and genre). This provides support for the
hypothesis that our measure can be used to evaluate how unbiased
a corpus is, and that issuing unbiased/biased queries to a search
engine is a viable, nearly knowledge-free way to create unbiased
corpora, and biased corpora to compare them against.

If our measure is quantifying unbiased-ness, then the lower
the value of δ with respect to a fixed set of biased samples, the
better the corresponding seed set should be for the purposes of
unbiased corpus construction. In this perspective, our experiments
also show that unbiased queries derived from “medium frequency”
terms (e.g., places, wonderful) perform better than all frequency
(therefore mostly low frequency) and high frequency terms (e.g.,
soils, contraction and even, what, respectively). Thus, while more
testing is needed, our data provide some support for the choice of
words that are neither too frequent nor too rare as seeds, when
building a Web-derived corpus.

Finally, the results indicate that, despite the fact that different
query sets retrieve on average different amounts of documents,
and lead to the construction of corpora of different lengths, there
is no sign that these differences are affecting our δ measure in a
systematic way; e.g., some of the larger collections, in terms of
number of documents and token size, are both at the top (the
unbiased samples) and at the bottom of the ranks (law, sociology)
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in table 7.

5 Conclusion

As research based on the Web as corpus, and in particular on auto-
mated Web-based corpus construction, becomes more prominent
within computational and corpus-based linguistics, many funda-
mental issues have to be tackled in a more systematic way. Among
these, there is the problem of assessing the quality and nature of
a corpus built with automated means.

In this paper, we considered one particular approach to auto-
mated corpus construction (via search engine queries for combi-
nations of a set of seed words), and we proposed an automated,
quantitative, nearly knowledge-free way to evaluate how “biased”
a corpus constructed in this way is. Our method is based on the
idea that the frequency distribution of words in an unbiased col-
lection will be, on average, less distant from distributions derived
from biased partitions, than any of the biased distributions (we
showed that this is indeed the case for a collection where we have
access to the full unbiased and biased distributions, i.e., the BNC),
and on the idea that biased collections of Web documents can be
created by issuing “biased” queries to a search engine.

The results of our experiments with Google, besides confirm-
ing the hypothesis that corpora created using unbiased seeds have
lower average distance to corpora created using biased seeds, com-
pared to the average distance of each biased corpus to the others
biased corpora, suggest that the seeds to build an unbiased corpus
should be selected among medium frequency words (medium fre-
quency in an existing balanced corpus, that is), rather than among
high frequency words or words not weighted by frequency (as in
the setting in which we sampled from the whole Brown type list).

We realize that our study leaves many questions open, each of
them corresponding to an avenue for further study. One of the
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crucial issues is what it means for a corpus to be unbiased. As we
already stressed, we do not necessarily want our corpus to be an
unbiased sample of what is out there on the Net – we want it to be
composed of content-rich pages, and reasonably balanced in terms
of topics and genres, despite the fact that the Web is unlikely to
be balanced in terms of topics and genres. Issues of representa-
tiveness and balance of corpora are widely discussed by corpus
linguists (see Kilgarriff and Grefenstette 2003 for an interesting
perspective on these issues from the point of view of Web-based
corpus work). For our purposes, we implicitly define balance in
terms of the set of biased corpora that we compare the target cor-
pus against. Assuming that our measure of unbiased-ness/balance
is appropriate, all it tells us is that a certain corpus is more/less
biased than another corpus with respect to the biased corpora we
compared them against (e.g., in our case, the corpus built with
mid frequency seeds is less biased than the others with respect to
corpora that represent 10 broad topic-based WordNet categories).
Thus, it will be important to check whether our methodology is
stable across choices of biased samples. In order to verify this,
we plan to replicate our experiments using a much higher number
of biased categories, and systematically varying the biased cate-
gories. We believe that this should be made possible by sampling
biased documents from the long lists of pre-categorized pages in
the Open Directory Project (http://dmoz.org/).

Our WordNet-based queries are obviously aimed at creating
corpora that are biased in terms of topics, rather than genres or
textual types. A balanced corpus should also be unbiased in terms
of genres. In order to apply our method to genre-based balancing,
we need to devise ways of constructing corpora that are genre-
specific, rather than topic-specific. This is a more difficult task,
not least because the whole notion of what exactly is a“Web genre”
is far from settled (see, e.g., Santini 2005). Moreover, while sets
of seed words can be used to retrieve words belonging to a certain
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topic, it is less clear how genres can be targeted through search
engine queries. Again, the Open Directory Project categorization
could be helpful here, as it seems to be, at least in part, genre-
based (e.g., the Science section is organized by topic – agriculture,
biology, etc. – but also into categories that are likely to correlate, at
least partially, with textual types: chats and forums, educational
resources, news and media, etc.)

We tested our method on three rather similar ways to select un-
biased seeds (all based on the extraction of words from an existing
balanced corpus). Corpora created with seeds of different kinds
(e.g., basic vocabulary lists, as in Ueyama this volume) should
also be evaluated. Indeed, a long term goal would be to use our
method to iteratively bootstrap “optimal” seeds, starting from an
arbitrary seed set. More in general, the method is not limited
to the evaluation of corpora built via search engine queries. For
example, it would be interesting to compare the randomness of
corpora built in this way to that of corpora built by Web crawls
that start from a set of seed URLs (e.g., Emerson and O’Neil this
volume).

Finally, we would like to explore extensions of our method that
could be applied to the analysis of corpora in general (Web-derived
or not), both for the purpose of evaluating their relative degree of
biased-ness, and as a general-purpose corpus comparison technique
(on corpus comparison, see, e.g., Kilgarriff (2001).
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